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* When any surface S is referred to a conjugate system with equal
point invariants, its cartesian coérdinates x, y, 3, are solutions of an
equation of the form
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If 0; is any solution of this equation, linearly independent of %, y and 2,
the surface S; whose cartesian coordinates, %, ¥;, 2, are given by equa-
tions of the form
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where \; is given by the quadratures
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is referred to a conjugate system with equal point invariants, and cor-
responding points M and M; on S and S: are harmonic with respect
to the focal points of the line MM; for the congruence of these lines.
We say that S; is obtained from S by a transformation K. We have
studied these transformations at length in a recent memoir.! In the
present note we consider the case where the lines MM, form a normal
congruence. In this case there exists a solution ¢ of equation (1) such
that a? + y? + 22 — #? also is a solution. Thus the parametric conju-
gate system is 2 O in the sense of Guichard, and ¢ is the complementary
function. The surface S: has the same properties. ‘

By definition a surface C is one possessing a conjugate system 2 O
with equal point invariants. When this system is parametric, the first
fundamental coefficients of C have the form
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and this property is characteristic.

It can be shown that when a surface C is referred to the system 2 O with
equal point invariants, there can be found without quadratures two sur-
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faces of the same kind, say Co and Co', such thai the congruences of lines
MM, and MM\ are normal. Furthermore, the spheres of radius ¢ with
their centers on C are enveloped by two surfaces, each of which is orthogonal
to one of the congruences. These orthogonal surfaces are surfaces Q@ as
defined by Demoulin,® who showed that they are characterized by the
property that their fundamental coefficients E, G, D, D", when the
lines of curvature are parametric, satisfy the condition
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where U and V are functions of # and v respectively.

IfX, Y, 2; Xy, Y1, Z,; Xz, Ys, Z; denote the direction-cosines of the
normal to a surface C, and of the bisectors of the angles between the
tangents to the parametric curves, we may write the equations of a
transformation K in the form (cf. Transactions, loc. cit.)
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where m; is a constant and a;, b;, w; are functions satisfying the com-
pletely integrable system of equations
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where 2w is the angle between the parametric lines on C, D and D"
are the second fundamental coefficients of C, and
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-For the sake of brevity we put
T=a?+ b +w!, H=VEG-F. T (@8
The functions a,, by, wo, Mo, 6p Which determine C, are given by
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The complementary function £, for Co is given by
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The functions for the surface Cy’ are analogous to the above.
Ordinarily the surfaces S; derived from a surface C by transfor-
mations K are not surfaces C. However, the equations

% /| 05 01— sin by (5= ) 742 (cos s~ s b
]

(11)
%—3} +vVG [cos wa,+ sin wb,+ (¢, —1) MT;M (cos way+ sin wbo)]
’ 1
are consistent with equations (7) for z = 1, the function 6, so defined
is a solution of equation (1), and the new surface S;, given by (6), is
a surface C, say C,. In particular we remark that the function ¢ given
by (2), when x; and x are replaced by ¢, and ¢ respectively, is the com-
plementary function for C;. Furthermore, if x; and x in equations (2)
are replaced by #:> + y:2 + 22 —#? and 22 4+ y? 4 22— ;2 the resulting
equations are satisfied.

With the aid of the theorem of permutability of general transforma-
tions K (cf. Tramsactions, loc. cit., p. 406) we show that if C, C, and C,
are three surfaces in the relation indicated above, a fourth surface Cio can
be found without quadratures such that the lines joining corresponding
points M, M1, on C1 and Cyo is a normal congruence.

Likewise it is found that the surfaces @ and Q. normal to the congruences
of the lines MM, and M, M, at the distances ¢ and ¢, from C and C, re-
spectively envelope a two-parameter family of spheres, and the lines of
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curvature on Q@ and @, correspond. Thus equations (7) and (11) define
transformations of surfaces @ of the Ribaucour type. We call them
iransformations A. When in particular the surfaces C and C; are
associate surfaces, which is a special case of transformations K, the
surfaces Co and C, are likewise associate, and the surfaces @ and Q,,
as defined in the preceding theorem, have the same spherical represen-
tation of their lines of curvature.

By means of a generalized theorem of permutability for transforma—
tions K in general we prove the following theorem of permutability for
transformations A: If @, and @, are two surfaces obtained from a surface
Q by transformations A, there exists a surface ' which is in the relations of
transformations A with @, and O, and Q' can be found without quadratures.

Isothermic surfaces are surfaces C for which ¢ = 0. In this case the-
transformations 4 are equivalent to the transformations D, of iso-
thermic surfaces, discovered by Darboux and studied at length. by .
Bianchi.?

Surfaces with isothermal representation of their lines of curvature
are surfaces @ in the sense that the surface C is the locus of the point
midway between the centers of principal curvature of @, and C, is at
infinity. This case requires special study, but the results are analogous
to those of the general case. However, the transformations 4 are now
the same as the transformatlons of these surfaces established from
another point of view by me.* :
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It has been shown by me that reactions strictly analogous to those
which accompany the solution of the hydroxides of zinc, lead, and alu-
minium in aqueous solutions of potassium hydroxide take place when
the amides of certain metals are treated with liquid-ammonia solutions
of potassium amide. Thus, just as zinc hydroxide is known to dissolve
in an aqueous solution of potassium hydroxide to form potassium aquo-



