TRANSFORMATION OF SURFACES Ω

By L. P. Eisenhart
DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY
Presented to the Academy, December 28, 1914.

- When any surface S is referred to a conjugate system with equal point invariants, its cartesian coördinates x, y, z, are solutions of an equation of the form

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial u \partial v}+\frac{\partial \log \sqrt{\rho}}{\partial v} \frac{\partial \theta}{\partial u}+\frac{\partial \log \sqrt{\rho}}{\partial u} \frac{\partial \theta}{\partial v}=0 . \tag{1}
\end{equation*}
$$

If θ_{i} is any solution of this equation, linearly independent of x, y and z, the surface S_{i} whose cartesian coördinates, x_{i}, y_{i}, z_{i}, are given by equations of the form

$$
\begin{equation*}
\frac{\partial}{\partial u}\left(\lambda_{x} x_{i}\right)=-\rho\left(x \frac{\partial \theta_{i}}{\partial u}-\theta_{i} \frac{\partial x}{\partial u}\right), \quad \frac{\partial}{\partial v}\left(\lambda_{i} x_{i}\right)=\rho\left(x \frac{\partial \theta_{i}}{\partial v}-\theta_{i} \frac{\partial x}{\partial v}\right), \tag{2}
\end{equation*}
$$

where λ_{i} is given by the quadratures

$$
\begin{equation*}
\frac{\partial \lambda_{i}}{\partial u}=-\rho \frac{\partial \theta_{i}}{\partial u}, \quad \frac{\partial \lambda_{i}}{\partial v}=\rho \frac{\partial \theta_{i}}{\partial v}, \tag{3}
\end{equation*}
$$

is referred to a conjugate system with equal point invariants, and corresponding points M and M_{i} on S and S_{i} are harmonic with respect to the focal points of the line $M M_{i}$ for the congruence of these lines. We say that S_{i} is obtained from S by a transformation K. We have studied these transformations at length in a recent memoir. ${ }^{1}$ In the present note we consider the case where the lines $M M_{i}$ form a normal congruence. In this case there exists a solution t of equation (1) such that $x^{2}+y^{2}+z^{2}-t^{2}$ also is a solution. Thus the parametric conjugate system is $2 O$ in the sense of Guichard, and t is the complementary function. The surface S_{i} has the same properties.
By definition a surface C is one possessing a conjugate system 20 with equal point invariants. When this system is parametric, the first fundamental coefficients of C have the form

$$
\begin{equation*}
E=\left(\frac{\partial t}{\partial u}\right)^{2}+\frac{1}{\rho}, \quad F=\frac{\partial t}{\partial u} \frac{\partial t}{\partial v}, \quad G=\left(\frac{\partial t}{\partial v}\right)^{2}+\frac{1}{\rho}, \tag{4}
\end{equation*}
$$

and this property is characteristic.
It can be shown that when a surface C is referred to the system 20 with equal point invariants, there can be found without quadratures two sur-
faces of the same kind, say C_{0} and $C_{0}{ }^{\prime}$, such that the congruences of lines $M M_{0}$ and $M M_{0}{ }^{\prime}$ are normal. Furthermore, the spheres of radius t with their centers on C are enveloped by two surfaces, each of which is orthogonal to one of the congruences. These orthogonal surfaces are surfaces Ω as defined by Demoulin, ${ }^{2}$ who showed that they are characterized by the property that their fundamental coefficients $\bar{E}, \bar{G}, \bar{D}, \bar{D}^{\prime \prime}$, when the lines of curvature are parametric, satisfy the condition

$$
\begin{equation*}
\frac{\partial}{\partial u}\left(\frac{\frac{\partial}{\partial v}\left(\frac{\bar{D}^{\prime \prime}}{\bar{G}}\right) \sqrt{\bar{G}} \bar{U}}{\overline{\bar{D}}-\overline{\bar{D}^{\prime \prime}}} \frac{-\overline{\bar{E}}}{\bar{G}} \overline{\bar{E}}\right)+\frac{\partial}{\partial v}\left(\frac{\frac{\partial}{\partial u}\left(\frac{\bar{D}}{\bar{E}}\right) \sqrt{\bar{E}} \bar{V}}{\frac{\bar{D}}{\bar{E}}-\frac{\overline{D^{\prime \prime}}}{\bar{G}} \sqrt{\bar{G}} \bar{U}}\right)=0, \tag{5}
\end{equation*}
$$

where \bar{U} and \bar{V} are functions of u and v respectively.
If $X, Y, Z ; X_{1}, Y_{1}, Z_{1} ; X_{2}, Y_{2}, Z_{2}$ denote the direction-cosines of the normal to a surface C, and of the bisectors of the angles between the tangents to the parametric curves, we may write the equations of a transformation K in the form (cf. Transactions, loc. cit.)

$$
\begin{equation*}
x_{i}-x=\frac{1}{m_{i} \lambda_{i}}\left(a_{i} X_{1}+b_{i} X_{2}+\omega_{i} X\right) \tag{6}
\end{equation*}
$$

where m_{i} is a constant and a_{i}, b_{i}, ω_{i} are functions satisfying the completely integrable system of equations

$$
\begin{align*}
& \frac{\partial a_{i}}{\partial u}=-m_{i}\left(\lambda_{i}-\rho \theta_{i}\right) \sqrt{E} \cos \omega+b_{i} A+\frac{w_{i} D}{2 \sqrt{E} \cos \omega} \\
& \frac{\partial a_{i}}{\partial v}=-m_{i}\left(\lambda_{i}+\rho \theta_{i}\right) \sqrt{G} \cos \omega-b_{i} B+\frac{w_{i} D^{\prime \prime}}{2 \sqrt{G} \cos \omega}, \\
& \frac{\partial b_{i}}{\partial u}=m_{i}\left(\lambda_{i}-\rho \theta_{i}\right) \sqrt{E} \sin \omega-a_{i} A=\frac{w_{i} D}{2 \sqrt{E} \sin \omega}, \tag{7}\\
& \frac{\partial b_{i}}{\partial v}=-m_{i}\left(\lambda_{i}+\rho \theta_{i}\right) \sqrt{G} \sin \omega+a_{i} B+\frac{w_{i} D^{\prime \prime}}{2 \sqrt{E} \sin \omega}, \\
& \frac{\partial w_{i}}{d u}=-\frac{D}{2 \sqrt{E}}\left(\frac{a_{i}}{\cos \omega}-\frac{b_{i}}{\sin \omega}\right), \frac{\partial w_{i}}{d v}=-\frac{D^{\prime \prime}}{2 \sqrt{G}}\left(\frac{a_{i}}{\cos \omega}+\frac{b_{i}}{\sin \omega}\right),
\end{align*}
$$

where 2ω is the angle between the parametric lines on C, D and $D^{\prime \prime}$ are the second fundamental coefficients of C, and

$$
A=\sqrt{\frac{E}{G}} \frac{\partial \log \sqrt{\rho}}{\partial v} \sin 2 \omega-\frac{\partial \omega}{\partial u}, \quad B=\sqrt{\frac{G}{E}} \frac{\partial \log \sqrt{\rho}}{\partial u} \sin 2 \omega-\frac{\partial \omega}{\partial v} .
$$

For the sake of brevity we put

$$
\begin{equation*}
T_{i}^{2}=a_{i}^{2}+b_{i}^{2}+w_{i}^{2}, \quad H=\sqrt{E G-F^{2}} \tag{8}
\end{equation*}
$$

The functions $a_{0}, b_{0}, w_{0}, \lambda_{0}, \theta_{0}$ which determine C_{0} are given by

$$
\begin{gather*}
a_{0}=-\sin \omega \cdot w_{0} \rho\left(\sqrt{G} \frac{\partial t}{\partial u}+\sqrt{E} \frac{\partial t}{\partial v}\right) \\
b_{0}=\cos \omega \cdot w_{0} \rho\left(\sqrt{G} \frac{\partial t}{\partial u}-\sqrt{E} \frac{\partial t}{\partial v}\right) \\
\frac{\partial \log w_{0}}{\partial u}=\frac{D}{H} \frac{\partial t}{\partial u}, \quad \frac{\partial \log w_{0}}{\partial v}=\frac{D^{\prime \prime}}{H} \frac{\partial t}{\partial v}, \quad T_{0}=H \rho w_{0} \tag{9}\\
\frac{m_{0}}{T_{0}}\left(\lambda_{0}-\rho \theta_{0}\right)=\frac{D}{H}+\frac{1}{\partial t} \frac{\partial}{\partial u} \log H \rho, \frac{m_{0}}{T_{0}}\left(\lambda_{0}+\rho \theta_{0}\right)=\frac{D^{\prime \prime}}{H}+\frac{1}{\partial t} \frac{\partial}{\partial v} \log H \rho
\end{gather*}
$$

The complementary function t_{0} for C_{0} is given by

$$
\begin{equation*}
t_{0}=t-\frac{T_{0}}{\lambda_{0} m_{0}} \tag{10}
\end{equation*}
$$

The functions for the surface $C_{0}{ }^{\prime}$ are analogous to the above.
Ordinarily the surfaces S_{i} derived from a surface C by transformations K are not surfaces C. However, the equations

$$
\begin{align*}
& \frac{\partial \theta_{1}}{\partial u}+\sqrt{E}\left[\cos \omega a_{1}-\sin \omega b_{1}+\left(t_{1}-t\right) \frac{m_{1} \lambda_{1}}{T_{0}}\left(\cos \omega a_{0}-\sin \omega b_{0}\right)\right] \\
& \frac{\partial \theta_{1}}{\partial v}+\sqrt{G}\left[\cos \omega a_{1}+\sin \omega b_{1}+\left(t_{1}-t\right) \frac{m_{1} \lambda_{1}}{T_{1}}\left(\cos \omega a_{0}+\sin \omega b_{0}\right)\right] \tag{11}
\end{align*}
$$

are consistent with equations (7) for $i=1$, the function θ_{1} so defined is a solution of equation (1), and the new surface S_{1}, given by (6), is a surface C, say C_{1}. In particular we remark that the function t_{1} given by (2), when x_{i} and x are replaced by t_{1} and t respectively, is the complementary function for C_{1}. Furthermore, if x_{i} and x in equations (2) are replaced by $x_{1}{ }^{2}+y_{1}{ }^{2}+z_{1}{ }^{2}-t_{1}{ }^{2}$ and $x^{2}+y^{2}+z^{2}-t_{1}{ }^{2}$ the resulting equations are satisfied.

With the aid of the theorem of permutability of general transformations K (cf. Transactions, loc. cit., p. 406) we show that if C, C_{0} and C_{1} are three surfaces in the relation indicated above, a fourth surface C_{10} can be found without quadratures such that the lines joining corresponding points M_{1}, M_{10}, on C_{1} and C_{10} is a normal congruence.

Likewise it is found that the surfaces Ω and Ω_{1} normal to the congruences of the lines $M M_{0}$ and $M_{1} M_{10}$ at the distances t and t_{1} from C and C_{1} respectively envelope a two-parameter family of spheres, and the lines of
curvature on Ω and Ω_{1} correspond. Thus equations (7) and (11) define transformations of surfaces Ω of the Ribaucour type. We call them transformations A. When in particular the surfaces C and C_{1} are associate surfaces, which is a special case of transformations K, the surfaces C_{0} and C_{10} are likewise associate, and the surfaces Ω and Ω_{1}, as defined in the preceding theorem, have the same spherical representation of their lines of curvature.
By means of a generalized theorem of permutability for transformations K in general we prove the following theorem of permutability for transformations A : If Ω_{1} and Ω_{2} are two surfaces obtained from a surface Ω by transformations A, there exists a surface Ω^{\prime} which is in the relations of transformations A with Ω_{1} and Ω_{2}, and Ω^{\prime} can be found without quadratures.

Isothermic surfaces are surfaces C for which $t=0$. In this case the transformations A are equivalent to the transformations D_{m} of isothermic surfaces, discovered by Darboux and studied at length by Bianchi. ${ }^{8}$
Surfaces with isothermal representation of their lines of curvature are surfaces Ω in the sense that the surface C is the locus of the point midway between the centers of principal curvature of Ω, and C_{0} is at infinity. This case requires special study, but the results are analogous to those of the general case. However, the transformations A are now the same as the transformations of these surfaces established from another point of view by me. ${ }^{4}$
${ }^{1}$ Eisenhart, Trans. Amer. Math. Soc. 15, 397-430 (1914).
${ }^{2}$ Demoulin, Paris, C. R. Acad. Sci., 153, 703 (1911).
${ }^{3}$ Bianchi, Annali Mat. Milano, Ser. 3, 11, 93-158 (1905).
${ }^{4}$ Eisenhart, Trans. Amer. Math. Soc., 9, 149-177 (1908).

POTASSIUM AMMONO ARGENATE, BARATE, CALCIATE, AND SODATE

By Edward C. Franklin
DEPARTMENT OF CHEMISTRY, STANFORD UNIVERSITY
Presented to the Academy. January 9, 1915

It has been shown by me that reactions strictly analogous to those which accompany the solution of the hydroxides of zinc, lead, and aluminium in aqueous solutions of potassium hydroxide take place when the amides of certain metals are treated with liquid-ammonia solutions of potassium amide. Thus, just as zinc hydroxide is known to dissolve in an aqueous solution of potassium hydroxide to form potassium aquo-

